miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling

نویسندگان

  • Chunmei Shi
  • Min Zhang
  • Meiling Tong
  • Lei Yang
  • Lingxia Pang
  • Ling Chen
  • Guangfeng Xu
  • Xia Chi
  • Qin Hong
  • Yuhui Ni
  • Chenbo Ji
  • Xirong Guo
چکیده

Obesity results from numerous, interacting genetic, behavioral, and physiological factors. Adipogenesis is partially regulated by several adipocyte-selective microRNAs (miRNAs) and transcription factors that regulate proliferation and differentiation of human adipose-derived mesenchymal stem cells (hMSCs-Ad). In this study, we examined the roles of adipocyte-selective miRNAs in the differentiation of hMSCs-Ad to adipocytes. Results showed that the levels of miR-148a, miR-26b, miR-30, and miR-199a increased in differentiating hMSCs-Ad. Among these miRNAs, miR-148a exhibited significant effects on increasing PPRE luciferase activity (it represents PPAR-dependent transcription, a major factor in adipogenesis) than others. Furthermore, miR-148a expression levels increased in adipose tissues from obese people and mice fed high-fat diet. miR-148a acted by suppressing its target gene, Wnt1, an endogenous inhibitor of adipogenesis. Ectopic expression of miR-148a accelerated differentiation and partially rescued Wnt1-mediated inhibition of adipogenesis. Knockdown of miR-148a also inhibited adipogenesis. Analysis of the upstream region of miR-148a locus identified a 3 kb region containing a functional cAMP-response element-binding protein (CREB) required for miR-148a expression in hMSCs-Ad. The results suggest that miR-148a is a biomarker of obesity in human subjects and mouse model, which represents a CREB-modulated miRNA that acts to repress Wnt1, thereby promoting adipocyte differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity

MicroRNAs (miRNAs) have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism, adipocyte differentiation. To determine the role of adipogenic miRNAs in the adipocyte differentiation process, we used microarray technology to monitor miRNA levels in human adipose-derived mesenchymal stem cells (hMSCs-Ad), human stromal vascular cells...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

The Engimatic WNT signaling and Mesenchymal stem cell Adipogenesis: Impli- cations for Metabolic Disorders

The past decade has witnessed a sudden surge in the obesity prevalence worldwide. Obesity has been linked to several chronic metabolic disorders including diabetes, hyperlipidemia and atherosclerosis. Due to this there is an immense interest in understanding the intricate aspects of adipogenesis, specifically pertaining to the study of the mechanisms through which various signaling pathways reg...

متن کامل

Re-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia

Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015